Lesson 5. Fixed Points of First-Order Linear DS, Discrete Market Models

0 Warm up

Example 1. Consider the first-order linear $\mathrm{DS} A_{n+1}=s A_{n}+b, n=0,1,2, \ldots$ Assume $s \neq 1$. Find the fixed points.

1 Fixed points of first-order linear DS

1.1 When $s \neq 1$

- Consider the first-order linear $\operatorname{DS} A_{n+1}=s A_{n}+b, n=0,1,2, \ldots$
- We found the fixed point of this DS in Example 1 when $s \neq 1$:
- Is this fixed point attracting or repelling?
- Recall the general solution to this DS is
- If $|s|<1$, then
which means the fixed point is
- If $|s|>1$, then
which means the fixed point is

Example 2. Consider the $\operatorname{DS} A_{n+1}=-A_{n}+b, n=0,1,2, \ldots$. Write the first few terms of A_{n}.

- Example 2 shows us what happens when $s=-1$: the fixed point is
\square
1.2 When $s=1$
- If $s=1$ and $b \neq 0$, then
- If $s=1$ and $b=0$, then

2 Discrete market models

- A discrete market model describes the evolution of prices, supply, and demand of some product at discrete time points
- Variables:
- Equations:
- In other words:
- The supply at time \square is determined by the price at time \square
- The demand at time \square is determined by the price at time \square
- We can convert the equations above into a first-order linear DS describing the price of the product with some algebraic manipulation:
\square
- The general solution to this DS is
\square
- The single fixed point is
- Therefore, we can rewrite the general solution as
- Notice that $P_{t} \rightarrow \bar{P}$ when $\left(-\frac{d}{b}\right)^{t} \rightarrow 0$, which only happens when

Example 3. In the discrete market model, suppose $P_{0}=\bar{P}$. What does P_{t} equal for all t ? Why does your answer make sense?

