Lesson 5. Fixed Points of First-Order Linear DS, Discrete Market Models

0 Warm up

Example 1. Consider the first-order linear DS $A_{n+1} = sA_n + b$, n = 0, 1, 2, ... Assume $s \neq 1$. Find the fixed points.

1 Fixed points of first-order linear DS

1.1 When $s \neq 1$

• Consider the first-order linear DS $A_{n+1} = sA_n + b$, n = 0, 1, 2, ...

• We found the fixed point of this DS in Example 1 when $s \neq 1$:

- Is this fixed point attracting or repelling?
- Recall the general solution to this DS is
- If |s| < 1, then

• If |s| > 1, then

which means the fixed point is	
······································	

Example 2. Consider the DS $A_{n+1} = -A_n + b$, n = 0, 1, 2, ... Write the first few terms of A_n .

• Example 2 shows us what happens when s = -1: the fixed point is

1.2 When *s* = 1

• If s = 1 and $b \neq 0$, then

• If s = 1 and b = 0, then

2 Discrete market models

- A **discrete market model** describes the evolution of prices, supply, and demand of some product at discrete time points
- Variables:

• Equations:

- In other words:
 - The supply at time is determined by the price at time
 The demand at time is determined by the price at time
- We can convert the equations above into a first-order linear DS describing the price of the product with some algebraic manipulation:

- The general solution to this DS is
- The single fixed point is
- Therefore, we can rewrite the general solution as

• Notice that $P_t \to \overline{P}$ when $\left(-\frac{d}{b}\right)^t \to 0$, which only happens when

Example 3. In the discrete market model, suppose $P_0 = \overline{P}$. What does P_t equal for all t? Why does your answer make sense?